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ABSTRACT

Mixed Reality (MR) is increasingly integrated into daily life, pro-
viding enhanced capabilities across various domains. However,
users face growing notification streams that disrupt their immer-
sive experience. We present PersoNo, a personalised notification
urgency classifier for MR that intelligently classifies notifications
based on individual user preferences. Through a user study (N=18),
we created the first MR notification dataset containing both self-
labelled and interaction-based data across activities with varying
cognitive demands. Our thematic analysis revealed that, unlike in
mobiles, the activity context is equally important as the content and
the sender in determining notification urgency in MR. Leveraging
these insights, we developed PersoNo using large language mod-
els that analyse users’ replying behaviour patterns. Our multi-agent
approach achieved 81.5% accuracy and significantly reduced false
negative rates (0.381) compared to baseline models. PersoNo has
the potential not only to reduce unnecessary interruptions but also
to offer users understanding and control of the system, adhering to
Human-Centered Artificial Intelligence design principles.

Index Terms: Mixed Reality, Notification Classifier, Human Cen-
tered Artificial Intelligence.

1 INTRODUCTION

Mixed Reality (MR) environments are increasingly integrated into
daily life, blending digital information with physical surroundings.
In this paper, we treated MR as synonymous with Augmented Re-
ality: virtual objects integrated into the real world [57]. It enhances
human capabilities across manufacturing [14] and education [29].
However, to avoid losing touch with reality, users face growing no-
tification streams in MR, which present unique challenges as they
distract users from their immersive experience with no task-related
information. Virtual Reality (VR) studies have discussed similar
concerns of breaking the immersive experience and emphasised the
importance of notifications [13, 18, 52]. Yet isolating users from
notifications induces anxiety and disconnection [42]. This contra-
diction underscores the need for intelligent MR notification classi-
fiers to filter notifications and cause less disruption appropriately.
Human-computer interaction (HCI) researchers have studied
how to balance user attention and interruptions in mobile settings
for a long time. Prior work has revealed that the content of a mes-
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Figure 1: Left: Users are overwhelmed by MR notifications during
work, with only a few . Right: With PersoNo, only
urgent notifications are pushed to the user. The illustrates the
system —the Al analyser processes the user’s past notifica-
tion interaction history to generate user profiles, which Al raters then
use to evaluate upcoming notifications.

sage is a primary factor determining its urgency and a user’s like-
lihood of responding [25, 33]. In addition, users’ recent interac-
tions with senders allow them to make accurate notification specu-
lations [6], indicating the sender is pivotal in determining users’ re-
ceptivity to the notifications. Prior approaches [33, 35] have lever-
aged such insights to develop intelligent context-aware smartphone
notification systems. However, mobile users can easily distance
themselves from interruptions by putting their phones away. In con-
trast, to truly escape notifications in MR, users must completely re-
move their head-mounted devices (HMDs), which not only breaks
the immersive experience but also eliminates access to all the aug-
mented capabilities that make MR valuable for their work.

Unlike mobile notification researchers, MR/VR researchers
primarily focused on notification design and multimodal ap-
proaches [13, 31, 44, 51]. Limited research exists on intelligent
notification management [7, 28], yet we argue it is crucial for allevi-
ating user distraction. To date, no established dataset or framework
captures how users handle incoming notifications in MR, leaving
developers without datasets for developing MR notification classi-
fiers. This knowledge gap, coupled with the practical importance
of minimising user distraction in MR, motivates our research.

In this work, we aim to manage notifications intelligently to re-
duce user distraction while maintaining important notification up-
dates. We address two research questions that drive our study and
facilitate the development of the Personalised Notification Urgency
Classifier in MR (PersoNo): RQ1: How do users behave and
respond to notifications in MR? We seek to understand the hu-
man side of the problem: when an MR user receives a notifica-
tion, what factors influence whether they attend to it or ignore it?
Would the variables be the same as those in mobile notification
interaction? These responses inform the key variables to be con-
sidered in developing MR notification classifiers, providing critical
insights into contextual and user-specific factors. Regarding the
second research question, we draw upon previous notification clas-
sifier research [7, 11, 25], which demonstrated that personalised
models trained exclusively on individual user data outperform gen-


https://arxiv.org/abs/2508.19622v1

This is the author’s version of the article. To appear in an IEEE ISMAR conference.

eral models trained on aggregated multi-user datasets. Based on
these findings, we formulate RQ2: How can we automatically
classify the urgency of MR notifications in a personalised man-
ner? which encompasses three main dimensions for developing a
classifier: Data, Context, and Algorithm.

To address these questions, we conducted a detailed study and
developed a solution with three key contributions, corresponding to
three PersoNo essential elements (Data, Context and Algorithm):
(1) We created a new MR notification dataset through a user study
(N=18) where participants wore MR headsets while experiencing
everyday tasks and received messages. We collected objective
and subjective data through self-labelling (users’ rating notifica-
tion urgency) and by tracking actual response behaviours. With this
first-of-its-kind dataset (N = 18 x 198), we demonstrated that self-
labelling offers a convenient alternative to activity-based data col-
lection for future PersoNo deployment, yielding comparable clas-
sifier performance. (2) We analysed users’ replying behaviour
patterns regarding MR notifications. Our findings revealed cer-
tain patterns consistent with mobile research. For example, mes-
sage content emerged as a critical factor when determining whether
to attend to notifications [25]. However, we also discovered MR-
specific insights. Notably, activities were reported with similar fre-
quency as content when users described their behavioural patterns.
(3) Our proposed PersoNo algorithm leverages Large Language
Models (LLMs) and its classifier could accurately predict notifi-
cation urgency by analysing users’ replying behaviour patterns in
small notification datasets.

2 RELATED WORK

Digital Notifications Researchers have examined notifications
on smartphones and other personal devices. Mobile users receive
dozens of notifications per day (around 63.5 on average), primar-
ily from messaging and email, and typically attend to them within
minutes due to social pressures [41]. While frequent alerts can in-
duce stress or a sense of interruption, users also report feeling more
connected when messaging notifications keep them aware of social
updates [5]. Notably, complete avoidance of notifications is not a
viable solution; experiments disabling push alerts found that users
experienced anxiety and isolation without these ambient cues [42].
This underscores the need to manage rather than eliminate digi-
tal interruptions. Prior work identified key factors that determine
which notifications users deem urgent or worthy of immediate re-
sponse. The content of the message is consistently found to be a pri-
mary influence on perceived urgency and responsiveness [25, 33].
For example, critical or work-related content demands quicker at-
tention than trivial updates. The sender is another pivotal factor:
Chang et al. [6] observed that users often speculate about who a
notification is from, and recent interactions with a sender strongly
influence whether they will check the alert immediately. Other con-
texts also influence users’ receptivity. These contexts include loca-
tion [33, 39], time of day [46, 54] and activity context [2, 34]. These
insights informed the design of intelligent notification management
systems that attempt to filter or rank alerts by importance.

While existing notification research provides valuable insights
for users’ receptivity to mobile notifications, these findings may
not translate to MR directly. Unlike mobile notifications that users
can physically distance themselves from, MR notifications are in-
herently more invasive due to their immersive presentation within
the user’s field of view. Users must either endure disruptions or
remove headsets entirely, sacrificing all augmented capabilities. It
might potentially increase users’ notification fatigue. This funda-
mental difference necessitates specialised approaches for MR noti-
fication management. Our work investigates how established fac-
tors influencing notification receptivity manifest differently in MR,
and develops personalised intelligent systems based on the most
significant contexts.

Personalised Notification Classifier Research on intelligent
notification systems has explored multiple strategies: opportune
time predicting [7, 36, 47, 55] and notification management [25,
32]. Building upon this foundational research, subsequent stud-
ies [7, 11, 25] have compared models trained on personal and
generic data, revealing a consistent pattern: personal data enables
higher accuracy in notification classification. This raises a criti-
cal research challenge: how to construct an intelligent management
system with limited training data.

Prior works developed intelligent notification management sys-
tems from both subjective [7, 34] and objective experience [32, 40].
Inspired by this, we compared two data collection methods: self-
labelling and interaction, both previously used in message classifi-
cation research [11, 7]. They were included in our study, as each of-
fers distinct advantages. Previous interaction-based data collection
typically required several weeks to gather sufficient classifier train-
ing data. For example, Mehrotra et al. [32] needed a 15-day exper-
iment to collect mobile notifications, while Pielot et al. [40] spent
an average of four weeks gathering data. In contrast, self-labelling
allows notifications to be categorised within a much shorter time-
frame. This efficiency could significantly enhance user acceptance
of classifier applications, as users typically prefer applications that
are ready for use shortly after deployment [30]. However, prior
work [10] indicates that self-reporting and actual behaviours are
only weakly correlated. It suggests that self-labelled data might not
be reliable for training personalised classifiers. Our study, there-
fore, aims to compare the accuracy of classifiers trained on both
types of data to determine whether self-labelled data can effectively
substitute for interaction-based data in this context.

Notifications in Mixed Reality = As computing extends into im-
mersive environments like VR, notification management faces new
challenges. In VR, users can become so engrossed that they miss
critical external messages, leading to frustration when important in-
formation is delayed [18]. To address this challenge, numerous VR
researchers have investigated optimal placement strategies to ensure
user visibility and attention [18, 52, 19]. Besides the visual cues,
Ghosh et al. [13] explored multiple modalities for VR notifications.
Among visual, aural, and haptic notifications, haptic ones were the
least effective, a finding that aligns with subsequent research by
George et al. [12].

While VR notification research has made considerable progress,
MR introduces further complexity as digital information overlays
the real world rather than replacing it. Prior works have explored
the effectiveness of notifications across different multimodali-
ties [31, 9]. From a visual perspective, Rzayev et al. [51] demon-
strated that notification positioning significantly impacts user per-
ception, with proper alignment crucial for minimising distraction
while maintaining awareness. Notably, Li et al.[26] developed a
computational framework that predicts virtual element noticeabil-
ity by analysing visual saliency patterns to anticipate when users
detect element changes.

While existing research in MR and VR has predominantly fo-
cused on notification design elements like placement, modality, and
visual appearance, there remains a significant gap in an intelligent
MR notification management system. In this context, early work
by Orlosky et al. [37] showed that using see-through HMDs to re-
lay mobile notifications can increase message awareness with min-
imal performance impact compared to checking handheld phones.
However, this advantage diminishes in high cognitive load situa-
tions where users exhibit varying receptivity to interruptions; only
HMDs equipped with intelligent notification systems that adapt to
users’ cognitive states and contextual preferences can truly deliver
benefits without compromising task performance, such as the adap-
tive MR user interfaces based on users’ cognitive load [28]. Our re-
search first investigates the most significant contexts affecting MR
users’ receptivity to notifications, leveraging participant-reported
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Figure 2: The research approach we took for our investigation.

contexts to develop an MR notification management system that
enhances user experience. More broadly, our work focuses on mit-
igating distraction in MR. While previous research has explored
distraction reduction in MR/VR generally [48, 63, 49], our work
makes a distinct contribution by specifically focusing on distraction
mitigation through intelligent notification management.

3 RESEARCH APPROACH

Our research addresses interaction challenges in MR notification
systems through a three-stage approach depicted in Figure 2. Each
study addressed one core PersoNo classifier component: Study 1
focused on Data, Study 2 on Context, and Study 3 on Algorithm.
Study 1 collected an MR notification dataset through a user study,
complemented by the Experience Sampling Method (ESM) [17] to
capture participants’ behavioural patterns through immediate self-
reports. This facilitates subsequent analysis of optimal data col-
lection methods (self-labelled or interaction-based) for future Per-
soNo deployment. The ESM data directly informed Study 2, where
we analysed human behaviour patterns regarding notification inter-
action in various contexts. This identifies the key variables Per-
soNo should consider when classifying notification urgency levels.
Building on these insights, Study 3 leveraged the MR notification
datasets and crucial contexts to develop an intelligent MR notifica-
tion management system, PersoNo.

Our work identifies crucial contextual variables that influence
notification receptivity in MR. It provides both empirical insights
into user behaviour and practical solutions for reducing notification
distraction while maintaining awareness of important information.
This integrated approach bridges human-centred research with ad-
vanced Artificial Intelligence (Al) techniques to address a signifi-
cant usability challenge in emerging MR interfaces.

4 STtuDY 1: MR NOTIFICATION DATA COLLECTION

To the best of our knowledge, the field lacks a comprehensive MR
notification interaction dataset. To build an MR notification clas-
sifier, our research requires a user study to collect MR notification
data. This collection serves two key purposes: analysing how par-
ticipants respond to notifications in MR and developing an effective
notification classification system.

To collect both the subjective and objective notification dataset,
two phases (self-label phase and interaction phase) were conducted
in a counter-balanced order. In the self-label phase, participants as-
sessed the urgency levels of 90 randomly selected notifications from
our dataset (details in Section 4.1.1), given the message content and
the senders. For the interaction-based data collection phase, partic-
ipants engaged in three MR activities, each consisting of two ten-
minute sessions. Between sessions, there was at least a one-minute
break. Our system recorded participants’ behavioural responses and
classified notifications as ‘non-urgent’ when participants either ig-
nored or dismissed them, and as ‘urgent’ when participants actively
chose to respond within 30 seconds.

Our approach classified notification urgency into two categories:
urgent and non-urgent. This binary classification builds upon the
work of Weber et al. [61], who initially identified four notification
clusters (CI, C2, C3, and C4) in daily interactions. Their research
revealed that only C/ notifications demanded immediate user atten-
tion, while C2, C3, and C4 could be addressed at the user’s con-

venience. Thus, we used a binary classification in our study based
on whether immediate attention is required, which also aligns with
the previous notification research design [33]. We define the urgent
notifications as those that require replies within 30 seconds, and
non-urgent notifications which did not have this time constraint.

We initially hypothesised that considering only two key variables
(content and sender) could achieve high prediction accuracy, as pre-
vious research [6, 25, 34] suggested that these variables alone could
yield reasonable results. Additional factors incorporated into the
further analysis include the activities in which users were involved
and their established messaging reply habits, as determined through
the following thematic analysis. Our contribution in this section lies
in the construction of an MR notification dataset based on users’ in-
teraction behaviour during the MR activities (N = 18 x 108, com-
prising 18 participants with 108 notification data points per partici-
pant) and a self-labelled dataset (N = 18 x 90).

4.1 Mixed Reality Notification
4.1.1 Notification Dataset

Our study focused exclusively on instant messaging (IM) notifica-
tions, as mobile IM messages are anticipated to become a funda-
mental MR component [24]. We selected WhatsApp as the ap-
plication source due to its widespread use in our region. For the
MR activity data, we carefully balanced the quantity of data with
notification frequency. While aiming to maximise data collection,
we avoided pushing notifications too frequently to prevent user an-
noyance, establishing a reasonable notification interval (See Sec-
tion 4.4). In total, we collected 108 notification instances during the
MR activities and separated them into training and testing datasets
(90 and 18, respectively; more details in Subection 6.1). Our ap-
proach follows established methodological practices in notification
research [7, 25] that separate activity-generated data into distinct
training and testing datasets. To ensure equivalent training sets
across both collection methods, we also gathered 90 self-labelled
data, resulting in 198 notification data.

To protect participant privacy, we used Python scripts to ran-
domly extract 198 data from the online Mobile Text Dataset (mo-
bile_train.txt) [59]. This dataset is grounded in real-world mobile
user behaviour. Originally, the dataset only contained the message
content. To emulate the real-world experience, we assigned sender
placeholders for each notification, such as friend 1 and friend 2.
Similar to the previous work [52], we collected the names of par-
ticipants’ friends and supervisors to replace the sender placehold-
ers before the study and used these names as message senders dur-
ing the experiment. To further enhance the realistic experience, we
also incorporated group messages at proportions similar to those
reported in Pielot et al.’s work [43] (40 group messages and 158
messages).

4.1.2 Notification Interaction

We designed notification interaction to mirror actual behaviours:
users can ignore, actively dismiss, or respond to notifications (see
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Figure 3: Examples of Notification Interaction. @ demonstrates the
gesture for dismissing notifications in MR. illustrates the tapping

interaction to access the notification panel displayed in @ which
features the “Reply” button that initiates the response workflow.
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Figure 3). During the activities, participants may ignore or dismiss
non-urgent notifications. If they did not actively dismiss or respond
within 20 seconds, notifications were automatically dismissed and
stored in the notification panel (see Figure 3C), aligning with previ-
ous research [52]. Additionally, participants had the option to man-
ually dismiss notifications using a specific gesture (see Figure 3A).
A response was required for notifications deemed urgent by the par-
ticipants. Unlike the prior studies [7, 52] that only allowed quick
responses through simple controller presses, our study required par-
ticipants to take additional steps to reply due to the common prac-
tice where users typically respond to notifications manually rather
than using the smart reply [22].

Participants needed to open the app by either tapping the noti-
fication or gesturing to respond to notifications. We omitted the
message-typing step and utilised the “Reply” button click to simu-
late the reply process (see Figure 3C) to streamline the process and
avoiding fatigue and dizziness caused by longer study duration.

4.1.3 Notification Display

We adopted a notification user interface design (see Figure 4D-F)
similar to previous work [7, 52], which displays the sender, an im-
age of the application source, and the content. All notifications
were placed within the participants’ field of view and designed to
be easily noticeable. Specifically, notifications were placed in the
bottom centre of the user’s field of view, as prior work [53] showed
this position improves comprehension and reduces distraction while
sitting and Plabst et al. [45] found subtitles provide higher compre-
hension and noticeability than heads-up displays. We positioned
notifications 0.25 meters from users, closer than the Quest 3’s focal
distance of over 1 meter, to accommodate table-based MR tasks.
Greater distances risked users reaching through the table when tap-
ping, potentially causing injury. Overall, notifications were placed
0.25 meters away and angled 25° below the user’s line of sight.

4.2 Procedure

The entire study lasted approximately two hours. Upon arrival, par-
ticipants were welcomed and provided with the information sheet
detailing the study’s purpose. Then, they signed a consent form
and completed a demographic questionnaire. As mentioned ear-
lier, before conducting the formal study, we asked their friends and
bosses/supervisors for a few names. This information was filled in
our notification dataset to replace the placeholders, such as Friend
1 and Supervisor. Then, we utilised Python scripts to randomly
separate the data into two groups: self-labelled notifications (90)
and MR activity notifications (108). Following this, we counter-
balanced the order of the two data collection methods. During the
self-label phase, participants were asked to carefully read the no-
tification content and the sender, and then rate the urgency levels
of each notification according to their preferences and daily habits.
The self-labelling session was conducted on a laptop. Regarding the
MR activity part, we conducted an introductory session using slides
to outline basic interactions with notifications and the primary tasks
for each activity. Additionally, we developed an introductory VR
scene that allowed participants to familiarise themselves with the
notification interactions in a controlled environment. Once they
were confident in the interaction, the MR activities were conducted
in a Latin Square order to alleviate the carryover effects.

4.3 Participants

Our university’s ethics board approved the study. We compensated
participants through course credit or payment at the local minimum
wage. We recruited 18 participants (5 males and 13 females) from
our universities, aged from 18 to 27 years (M = 22.61, SD = 2.63).
All participants had either normal or corrected-to-normal vision and
were able to view notification details clearly. To measure partici-
pants’ familiarity with MR, we used a 5-point Likert scale, where 1
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Figure 4: Examples of Mixed Reality Activities. @ shows the Doo-
dling Activity. illustrates the Reading and Comprehension Activ-

ity. @ presents the Brainstorm Activity. @ and @ ® show the
examples of notifications received during the activity.

indicated very inexperienced (“I have only used MR once or twice
before, if at all”) and 5 indicated very experienced (“I use MR sev-
eral times a month”). Results showed that participants were gener-
ally unfamiliar with MR (M = 2.5, SD = 1.12).

We also collected data regarding participants’ mobile IM no-
tification preferences. Participants were asked to select contexts
and the most important one affecting their receptivity to mobile IM
notifications, including Notification Content, Sender, Application
Source, Cognitive Load, Time, Location, Mood, Activity, and oth-
ers [5, 34]. 14 participants identified Notification Content as a sig-
nificant context, while 7 selected Sender and 9 chose Activity. Re-
garding the most influential factor, Notification Content emerged as
the most influential factor, reported by 10 out of 18 participants, fol-
lowed by Sender (N=3) and Application Source (N=3). Individual
contextual factors such as Mood (N=1) and Activity (N=1) showed
notable variability among participants. These findings align with
previous research indicating that most participants consider notifi-
cation content the most influential contextual factor [25].

4.4 Experiment Design

Mixed Reality Activities Users engaged in three MR activi-
ties: Doodling, Brainstorming, and Reading and Comprehension
(see Figure 4 (A-C)). These activities require varying levels of cog-
nitive load, ranging from low to high [28]. It created a realistic
testing environment where users encountered notifications across
different mental states and activity types, similar to daily life expe-
riences. During the Doodling activity, participants were provided
with five different plain graffiti drawings and coloured pens. They
were free to choose one drawing and doodle without specific re-
quirements. For the Brainstorming activity, participants focused on
designing future notifications in MR. Following Rietzschel et al.’s
guideline [50], participants wrote their ideas on A4-sized sheets of
paper and were encouraged to think creatively without concerns
about feasibility. For example, they were prompted to consider
multi-modal notifications beyond visual elements, including haptic
feedback and taste. The Reading and Comprehension materials and
questions were sourced from easyCMB [1], a resource widely used
in previous research [8, 21]. Participants were instructed to read as
quickly as possible while ensuring accuracy in their answers.

Data Collection The primary objective of our experiment was
to collect notification data categorised by urgency levels. The study
consisted of two parts: a self-label session and an interaction ses-
sion. In the self-label session, participants labelled the urgency lev-
els of each notification (90 notifications) in a CSV file. In the in-
teraction session, participants engaged in three MR activities, with
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each activity divided into two 10-minute sessions. For each activ-
ity session, participants performed a primary task (the MR activity)
while simultaneously handling a secondary task: reading notifica-
tions carefully and deciding whether to reply to messages. During
each 10-minute activity session, 18 notifications were sent to par-
ticipants at random intervals ranging from 20 to 32 seconds (cf.
[52]). Our script automatically classified notifications based on re-
sponse time: if a notification received a reply within 30 seconds,
it was labelled as urgent (1); otherwise, it was labelled as non-
urgent (0). Our system yielded two distinct datasets for analysis
in Section 6. Dataset 1 comprises information about the Sender,
Content, and Urgency level, while Dataset 2 expands upon this by
including Sender, Content, Urgency level, and Activity context. To
further protect participant privacy, we parsed their friend and super-
visor names to generic placeholders (e.g., Friend 1 and Supervisor)
throughout the dataset. To gain deeper insights into participants’
decision-making processes, we applied the Experience Sampling
Method (ESM) [17]. During the user study, at least one researcher
periodically asked them to explain their notification response pat-
terns. For example, a common prompt was: “Could you please
explain why you replied to your friend’s last message?”. These
qualitative insights were summarised and documented. It was in-
corporated into our analysis (see section 5).

Additionally, we measured participants’ cognitive load during
the study. While Lindlbauer et al. [28] employed the three MR ac-
tivities as requiring different cognitive loads in application scenar-
ios, they did not empirically demonstrate these differences. To ad-
dress this gap, we administered the NASA-TLX questionnaire [15],
which provided a standardised assessment of participants’ per-
ceived cognitive workload across the different activities.

Apparatus We utilised a Windows 11 laptop with an NVIDIA
GeForce RTX 4080, an Intel Core i9-13980HX processor, and
32GB RAM, which connected to the Meta Quest 3 headset. This
configuration supported the pass-through functionality required for
our MR environment. The software application was developed and
implemented using Unity version 2022.3.22f1.

4.5 Results

The NASA-TLX analysis revealed significant differences in cogni-
tive workload across the three conditions (Doodling, Brainstorm-
ing, and Reading). Shapiro-Wilk tests confirmed normal distribu-
tion only for Performance across activities (Doodling: p = .283,
Brainstorm: p = .316, Reading: p = .243) with no significant dif-
ferences found via one-way repeated measures ANOVA (p = .190).
Friedman tests for non-normally distributed dimensions revealed
significant differences in Mental Demand (x2(2) = 13.82,p =
.001), Temporal Demand (%(2) = 9.97, p = .007), Effort (x2(2) =
8.27,p = .016), and Frustration (x2(2) = 10.68, p = .005). Post-
hoc analyses with Bonferroni correction demonstrated that Reading
induced significantly higher Mental Demand than Doodling (p =
.004), as well as higher Temporal Demand (p = .013) and required
more Effort (p = .025). No significant differences were found for
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Figure 5: The raw NASA-TLX results (p < .05(*), p < .01(**).

Table 1: Codebook for Notification Response Patterns in Mixed Re-
ality. The frequency of each code assignment is indicated in paren-

theses. Individual notifications may receive multiple codes.

Definition

Theme Sub-Theme
Authority-Based Priori-
Sender (11 tisation (8)

Social Relationship Pri-
oritisation (3)

Group Message Igno-
rance (8)

Preferential response to notifications from
supervisors

Preferential response to notifications from
friends

Tendency to ignore group messages

Action Request Re-
sponse (12)

Content Length Sensitiv-
ity (5)
Information
Evaluation (3)
Implicit Content Cues

Content (14)

Density

Tendency to respond to notifications re-
quiring action or questions

Response patterns influenced by notifica-
tion length

Response based on perceived information
value

Response influenced by implicit cues of

3) notification
Cognitive Load Manage- Response patterns based on cognitive de-
.. ment (4) mands of current activity
Activity (14) Activity ~ Engagement Response patterns influenced by engage-
Level (2) ment with current activity

Activity-Specific ~ Re-
sponse Strategies (14)
Task Disinterest Dis-
placement (3)

Different response strategies for different
MR activities

Higher response rate due to disinterest in
primary task

Physical Demand (p = .491). For overall workload, which met nor-
mality assumptions, Repeated Measures ANOVA revealed signifi-
cant differences between activities (p < .001). Post-hoc analysis
indicated that Brainstorming required significantly higher overall
workload than Doodling (p = .041), while Reading demanded even
more significantly (p = .004). No significant difference was found
between Reading and Brainstorming (p = .169). Our analysis con-
firms that the three MR activities successfully created varied cog-
nitive demands, with reading imposing the highest workload, fol-
lowed by Brainstorming and Doodling, validating our experimental
design for studying notification behaviour across different cognitive
states. These findings support our methodology by confirming we
collected data across meaningfully different contexts.

4.6 Implications

Our user study establishes two essential datasets: a self-labelled
dataset (N = 18 x 90) and an interaction-based dataset (N = 18 x
108) capturing notification behaviour during three activities with
varying cognitive demands. Our NASA-TLX analysis confirms
these activities successfully created distinct cognitive workload
conditions, with Reading imposing a significantly higher overall
workload than Doodling, validating our experimental design and
ensuring data collection across meaningfully different cognitive
states. This methodological foundation directly supports our sub-
sequent analyses in section 5 by collecting users’ self-reported be-
haviour patterns through the ESM. The confirmed differences in
cognitive load across activities will be particularly valuable when
analysing how Activity influences notification responsiveness. Fur-
thermore, these datasets provide the necessary training and testing
data for developing our personalised notification urgency classifier
(PersoNo) in section 6, where we will evaluate different classifica-
tion approaches using both self-labelled and interaction-based data
to determine which yields the most effective urgency predictions.

5 STUDY 2: HUMAN BEHAVIOUR PATTERNS

While existing research established theoretical frameworks for mo-
bile notifications [25, 41, 34], our work adopts a top-down the-
matic approach [3] to systematically examine how these frame-
works manifest differently in MR. The unique perceptual and con-
textual factors of MR, where digital information overlays physi-
cal space, likely transform how users perceive, prioritise, and re-
spond to notifications. It raises our RQ1: How do users behave
and respond to notifications in MR? The next contribution is un-
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derstanding human behaviour patterns regarding MR notifications.
Our novel insights establish the critical contextual variables that
must be prioritised when developing MR notification classifiers, di-
rectly informing our later prompt construction methodology.

5.1 Thematic Analysis

Two researchers independently reviewed all users’ ESM data and
developed the initial codebook, referencing previous work by [25,
32]. We identified the Sender, Content, and Activity as the most fre-
quently mentioned factors, which formed the basis of three thematic
categories. After independently drafting initial codes, we collabora-
tively refined definitions and examples through discussion. Subse-
quently, we conducted a pilot phase on two self-reported behaviour
patterns (~ 10% of the data) to test and refine the codebook.

Following codebook construction, we randomly selected four
users’ behavioural patterns (~ 22% within the range suggested by
O’Connor et al. [38]) to validate our codebook, ensuring these were
distinct from those used in the pilot phase. In addition to the orig-
inal researchers who developed the codebook, we invited another
researcher to code the user behaviour using the established code-
book. We calculated Krippendorft’s alpha, a standard inter-rater re-
liability measure for non-mutually exclusive coding schemes [16].
Our Krippendorff’s alpha was 0.846 above the standard of reliable
labelling results [16]. After validating our codebook’s reliability,
two researchers independently coded all users” ESM data and sub-
sequently resolved any coding disagreements. Table 1 presents the
defined codebook and the frequency of code assignment.

5.2 Results

Our analysis identified three primary themes influencing notifica-
tion response in MR: Sender, Content, and Activity contexts (see
Table 1). Beyond these main themes, participants reported ad-
ditional notification response patterns, such as opportune timing
(N=2). Two participants indicated that opportune timing is cru-
cial in determining whether they would reply to messages within
30 seconds. Interestingly, P15 mentioned responding to notifica-
tions somewhat randomly, even when the content was important,
to avoid giving others the impression of constant availability. We
categorised these as “Others” and excluded them from our analysis
since only a few participants mentioned them.

Participants’ likelihood of attending to a notification depended
on who the sender was (N=11), but not always in the way seen
with smartphones. Surprisingly, personal friendship played a mini-
mal role in the immediate MR notification responses. Only three
instances were recorded. This differs markedly from traditional
mobile notification research [41, 5], where personal relationships
significantly influence notification attendance. Instead, participants
gave preferential attention to notifications from their supervisors
(N=8), while group notifications were often ignored (N=8).

Content characteristics emerged as equally important, with ac-
tion request responses (N=12) dominating this theme. Partici-
pants also demonstrated sensitivity to content length (N=5) and em-
ployed sophisticated information evaluation through implicit cues
(N=3) and information density assessment (N=3). While Li et
al. [25] found content factors influenced mobile notification pref-
erences more than contextual factors, our results indicate that in
MR, content considerations maintain equivalent importance along-
side sender and activity contexts, rather than dominating them.

Activity context featured prominently, with activity-specific re-
sponse strategies (N=14) representing our most frequent code. It
indicates that users often developed different notification response
rules for various activities in MR. Cognitive load management
(N=4) and task disinterest displacement (N=3) revealed how par-
ticipants balanced attention resources. Two participants reported
that they would use the Mute All function in reality when engaging
in any activities and respond to the notifications during breaks.
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Figure 6: Framework of the Classifiers with different In-Context
Learning Prompts. (@) shows M, zero-shot learning using user self-
reported behaviour patterns. @ refers to the M, multi-agent meth-
ods that an Al analyser extracts user profiles from the training data.

5.3 Implications

Our thematic analysis establishes a comprehensive framework that
advances MR notification classifier development by identifying key
themes (Sender, Content, and Activity) and their critical sub-themes
affecting user responsiveness. MR designers can use our codebook
to develop more sophisticated classification systems incorporating
nuanced factors.

It is noticeable that users’ MR notification behaviour patterns
differ from their self-reported receptivity to mobile notifications
(see subsection 4.3). A substantially higher number of participants
considered both Sender and Activity factors when deciding whether
to respond to MR notifications. This finding suggests that Activ-
ity represents a crucial variable when designing an MR notifica-
tion classifier, even though Li et al. [25] demonstrated that utilising
notification content alone for mobile notification classifiers could
achieve reasonable results. The discrepancy highlights the unique
contextual considerations necessary for effective notification man-
agement in MR compared to traditional mobile settings.

Furthermore, our findings reveal a significant departure from tra-
ditional mobile notification patterns. While previous research sug-
gests users typically prioritise responses to friends’ messages due to
social pressure [5, 41], only a few participants reported their prior-
ities in social relationships. Instead, users overrode this factor with
other considerations. Additionally, the substantially higher number
of participants who adopted activity-oriented notification response
strategies may be attributed to the more disruptive nature of MR no-
tifications, resulting in reduced notification receptivity during dif-
ferent activities. Thus, for the following notification classifier de-
velopment, in addition to our hypothesised variables (Sender and
Content), we also considered the Activity.

6 STUDY 3: NOTIFICATION CLASSIFIER

We developed an intelligent notification management system with
the training dataset (Study 1) and the key contextual factors iden-
tified in Study 2. Next, we describe our notification classifiers and
evaluate hypotheses related to three essential classifier components:
Data ([H2]), Context ([H3]), and Algorithm ([H1], [H4]).

[H1]: Personalised notification classifier will outperform the
general notification classifier. [H2]: Self-reported urgency ratings
will yield classification performance comparable to interaction-
based data. [H3]: Activity, mentioned as frequently as Content
by our participants, will outperform classification performance be-
yond models using only Sender and Content variables. [H4]: LLM
analysers will capture user notification response patterns accurately
and comprehensively based on our codebook framework.

6.1 Data Preparation

We utilised part of the notification data collected during MR ac-
tivities as the test data. Following previous work [25], we desig-
nated the last six notifications from each activity as testing data
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(N =6 x3 =18). This methodology emulates real-world scenar-
ios where historical data informs predictive models of human be-
haviour patterns. For analysis, we prepared three distinct train-
ing datasets: SR: Self-Report, containing data labelled directly
by participants during the self-report phase; D; (Dataset 1), an
interaction-based notification dataset collected during MR activi-
ties with key variables of Sender and Content; and D, (Dataset 2),
identical to D but incorporating Activity as an additional contex-
tual variable, which subsection 5.3 identified as crucial.

6.2 Model Design

Unlike previous research on notification classifier [7, 33] that
implemented traditional Machine Learning (ML) algorithms, we
leverage LLMs to build our notification classifier. In our study,
we utilised Qwen [58] (QwQ-32B), an open-source LLM, to en-
sure reproducibility. Pretrained on large-scale corpora, LLMs have
demonstrated essential language understanding capabilities [4].
This foundation enables the model to analyse the semantic mean-
ing of notification content and capture general urgency indicators,
such as calls to action and time-sensitive content [25]. Further-
more, previous work [4] has shown that In-Context Learning (ICL)
enables pre-trained language models to more effectively address
downstream tasks, in our case, notification urgency classification.
This technique requires a small amount of data, making LLMs ide-
ally suited for personalized notification classification, which inher-
ently has limited training data since all the data are from a single
user. Additionally, ICL provides an interpretable interface for LLM
interaction [4], which enhances the explainability of the algorithm.
Compared with traditional ML approaches, using LLMs with ICL
is more aligned with standards of Human-Centered Artificial Intel-
ligence (HCAI) [56], prioritising user understanding and control.
Three models were included in our study. We employed two
ICL methods to optimise the LLMs for notification urgency classi-
fication: (M) Zero-shot learning [4] utilising only user-reported
behaviour patterns collected via ESM, and (M) Multi Agent
(MA) [60] implementing an analyser LLM to create user profiles
from training data, which rater LLMs then use to classify test data.
Apart from the personalised classifiers using M and M,, we eval-
uated general notification classifiers using base models (Base) to
predict the test dataset directly. These models, trained on general
corpora, analyse urgency levels from the general users’ perspective.
To further improve the classification reliability and accuracy, we
integrated homogeneous LLM self-ensemble techniques [60] (see
Figure 6) and Chain-of-Thoughts (CoT) prompting [62]. Each
method employed five raters with a temperature setting of 1, re-
sulting in five independent votes per notification with certain ran-
domness. It was specifically employed to reduce prediction vari-
ance across multiple raters. The final urgency label was determined
by majority vote. Rather than direct classification, CoT prompted
LLMs to articulate their reasoning process step-by-step before mak-
ing predictions, significantly improving transparency and accuracy.

6.3 Prompt Design

We designed two ICL prompts as the base prompts based on
Dy/SR and D,. We augmented these base prompts with spe-
cific information to construct complete prompts for each method-
ological test, such as “The following is the user behaviour pat-
tern: {user_pattern}.” While being used for the Base, we left the
{user_pattern} blank. The prompts hold the variables in different
datasets: the first prompt (P1) instructed the model to analyse only
the Sender and Content variables, suitable for SR and Dy, while the
second prompt (P2) expanded the analysis to include Sender, Con-
tent, and Activity variables, corresponding to D;. These prompts
guided models in formulating reasoning based on the respective
variables before generating predictions. Further, for the analyser
LLMs in the MA framework, we integrated findings from the the-

Table 2: Comparison of models

Base M, M,
D, D, D, D, SR Dy D,
Accuracy 0.670 0.670 0.735 0.679 0.747 0.759 0.815
FNR 0.703 0.627 0.528 0.614 0.432 0.550 0.381
Specificity 0.887 0.846 0.838 0.818 0.821 0.923 0.875
AUROC 0.595 0.609 0.684 0.617 0.721 0.708 0.786

matic analysis (see section 5), instructing the analyser to consider
all identified sub-themes when developing comprehensive user pro-
files. We applied a similar method to design the rater prompts.

6.4 Model Configurations

We prompted models using factorial combinations of methods and
datasets METHOD X DATASET. For example, with M, x Dy, we
employed the multi-agent (M,) method and prompted analyser
models with interaction-based data containing Sender and Content
variables (D) using P1-based prompts. More specifically, M; op-
erates without a training notification dataset, relying exclusively
on user-reported behavioural patterns. Consequently, we utilised
both prompts (P1 and P2, detailed in subsection 6.3) to evaluate
this method, with P1 analysing Sender and Content variables while
P2 incorporated Activity as an additional contextual factor. Addi-
tionally, we evaluated a general notification classifier (Base) that,
similar to M, employed both P1 and P2 prompts but without any
information about user profiles. These Base models relied solely on
their pre-training on general corpora to analyse notification urgency
from a non-personalised perspective.

6.5 Results

We evaluated model performance using Accuracy, False Negative
Rate (FNR), Specificity, and Area Under the Receiver Operating
Characteristic (AUROC). While accuracy measures overall correct-
ness, it can be misleading with imbalanced notification urgency
classes. Specificity (true negative rate) measures the system’s abil-
ity to filter out non-urgent notifications, directly addressing our goal
of reducing unnecessary interruptions in MR. Furthermore, we in-
corporated the FNR to quantify missed urgent notifications. Based
on previous work’s findings [20, 34] that users tolerated interrup-
tions to avoid missing important updates, we assumed that the cost
of missing important notifications was higher than the cost of being
disturbed and prioritised minimising FNR. AUROC (see Figure 8)
provides a threshold-independent assessment of discriminative ca-
pability, remaining robust against the common imbalance where
non-urgent notifications typically outnumber urgent ones.

See Table 2 for the performance of all model configurations.
To evaluate our hypotheses regarding Data ([H2]) and Context
([H3]), we primarily focused on comparing PersoNo (Mj), our
proposed notification system, which demonstrated superior perfor-
mance across all metrics compared to alternative models. Statistical
significance between conditions was assessed using pairwise t-tests.

For [H1], we compared personalised notification classifiers
against the general classifier (Base). Results showed that person-
alised approaches (M| and M) consistently outperformed the base
model across all metrics. The base model achieved only 0.670 ac-
curacy with P1 and P2, while personalised models reached up to
0.815 accuracy with M, on D,. Notably, the FNR of the base
model was substantially higher (0.586 and 0.523) than personalised
approaches, indicating that users would be more likely to miss im-
portant information using the general classifier.

For [H2], we examined whether self-reported urgency ratings
yield comparable performance to interaction-based data. The M,
model using SR achieved 0.747 accuracy and 0.721 AUROC, while
the interaction-based data (D;) resulted in 0.759 accuracy and 0.708
AUROC. Pairwise t-tests showed no significant differences between
these approaches in accuracy and FNR (¢(17) = .334, p = .742 and
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Figure 7: Performance comparison of M, (PersoNo). (1) False Neg-
ative Rate and (2) Accuracy across conditions. indicate
changes in individual participant results (p < .05(*)).

t(17) = 1.99, p = .066), supporting our hypothesis that self-reports
serve as viable alternatives for classifiers.

For [H3], we investigated whether incorporating Activity con-
text would improve classification performance. The model trained
on D; (which included Activity context) significantly outperformed
D; (Sender and Content only) in both FNR (0.381 compared to
0.550, #(17) = 2.30, p = .037) and accuracy (0.815 compared to
0.759, ¢(17) = —2.15, p = .046). Moreover, D, demonstrated en-
hanced AUROC (0.786 compared to 0.708), confirming that Activ-
ity represents a crucial contextual factor in MR notification man-
agement. Figure 7 (1) demonstrates a reduction in FNR for the
majority of participants, as indicated by the general downward trend
of the gray dashed lines, while (2) exhibits the opposite pattern, re-
vealing an improvement in Accuracy.

For [H4], we assessed whether LLM analysers could effectively
capture user notification response patterns. The superior perfor-
mance of My, consisting of LLM analysers generating user profiles
and raters providing predictions, validated this hypothesis. M, con-
sistently outperformed M; prompted by P2, with the D, configura-
tion achieving significantly higher accuracy (0.815, #(17) = 3.335,
p = .004) and lower FNR (0.381, #(17) = —3.008, p = .009).

6.6 Implications

Analysis of our experimental results provides substantial evidence
supporting all four hypotheses. However, we found some unex-
pected decreases in the model performance with the incorporation
of the Activity context. Table 2 shows the accuracy of M| decreased
from 0.735 to 0.679 when LLM raters were prompted to consider
Activity context, which appears to contradict our [H3].

Several factors can explain this apparent contradiction. First, the
ESM data revealed that not all participants reported activity-based
behavioural patterns regarding MR notifications. In this context,
incorporating the Activity component would likely complicate the
rating process and potentially bias final evaluations by introducing
redundant information. Second, participants’ self-reported activity-
oriented behavioural patterns were often expressed in broad terms
that lacked the specificity needed for fine-grained classification.
This generality made it difficult for LLM raters to detect subtle dif-
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Figure 8: AUROC Results. TPR represents the True Positive Rate,
and FPR refers to the False Positive Rate.
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ferences between individual users’ notification preferences across
various activities. When LLMs were instructed to consider Activity
without sufficient user-specific data, they likely defaulted to general
population assumptions rather than personalised predictions. For
instance, LLMs might automatically classify notifications during
Reading as non-urgent based on its typical high cognitive load, re-
gardless of individual user preferences. However, some participants
reported difficulty focusing on the Reading task due to a lack of
interest, which increased their willingness to respond to IMs. Fur-
thermore, the zero-shot learning approach employed in M appears
particularly sensitive to this issue, as it lacks training examples that
would help calibrate activity-based predictions to individual users.

Nevertheless, the more sophisticated M, approach, which incor-
porated explicit training examples, successfully leveraged Activity
context to improve classification performance, ultimately support-
ing [H3] within more structured learning frameworks.

7 DISCUSSION
7.1 Human-Centered PersoNo

The PersoNo system, comprising an LLM analyser and raters,
demonstrated superior performance (accuracy of 0.815 and FNR of
0.381 with M,-D5), highlighting the potential of LLM applications
in personalised systems. Furthermore, the interpretability of LLM-
based systems represents a significant advantage. As stated by
Shneiderman [56], HCAI should not only focus on the algorithmic
performance but also empower users by offering control and under-
standing. Unlike black-box ML models, our CoT approach made
the classification process transparent, with LLM raters explicitly
articulating their reasoning before making predictions. This trans-
parency improved classification accuracy and could also enhance
user trust and system adoption. Additionally, our multi-agent ar-
chitecture enhances the system’s human-centered qualities by sepa-
rating profile generation from notification classification. This sepa-
ration enables potential user intervention in profile creation, allow-
ing users to review and adjust automatically extracted preferences.
By aligning fundamental aspects of HCAI design, such capability
affords users direct control over how the system interprets their no-
tification behaviour, fostering transparency and autonomy.

7.2 Impacts and Applications of PersoNo

Advancing Notifications Management from Mobile to MR
Our work extends mobile intelligent notification systems re-
search [25, 32] to the unique challenges of MR environments.
While prior mobile notification classifiers such as PrefMiner [32]
and content-driven systems [33] established foundational ap-
proaches for managing interruptions, they operated under funda-
mentally different interaction paradigms. Mobile users can phys-
ically distance themselves from devices, but MR notifications di-
rectly overlay the user’s visual field. PersoNo addresses this gap by
introducing the personalised notification classifier specifically de-
signed for MR’s spatial computing context. Our finding that activ-
ity context equals content importance (see section 5) gives different
perspectives from Li et al.’s [25] well-known mobile-centric frame-
work, where content dominated other factors. This shift reflects the
fundamental difference in how notifications compete for cognitive
resources in MR, a finding that extends Lindlbauer et al.’s [28] work
on context-aware MR interfaces to the notification domain.

Redefining Personalisation Via Limited Data Learning
Traditional personalised notification systems required extensive
data collection periods. For example, Mehrotra et al. [32] needed 15
days, while Pielot et al. [40] averaged four weeks. This requirement
has been a significant barrier to adoption, as noted by Maister [30].
PersoNo fundamentally reconceptualises the notification classifica-
tion through LLM-based learning, achieving 81.5% accuracy with
just 90 training instances ([H4]). It demonstrates the superior per-
formance with a limited dataset. This advancement builds upon
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recent work in few-shot learning [4] but applies it specifically to
the HCI challenge of notification management. Our multi-agent ar-
chitecture (M,) represents a novel application of LLM capabilities
to extract meaningful user profiles from minimal data—a contribu-
tion that extends beyond notification systems to any personalised
intelligent interface requiring rapid adaptation to individual users.

Bridging VR/MR Notification Design and MR Intelligence
While VR and MR notification research has advanced placement
strategies [18, 52] and multimodal design [13], these studies pri-
marily addressed notification presentation rather than intelligent fil-
tering. PersoNo bridges this critical gap by introducing person-
alised urgency classification, which enables dynamic adaptation of
established notification design principles. Our system transforms
static design guidelines into context-aware behaviours: urgent noti-
fications leverage the bottom-center placement proven most notice-
able [53, 45], while non-urgent messages can utilise less intrusive
in-situ positioning [52] that preserves spatial context without de-
manding immediate attention. In addition to the adaptive notifica-
tion placement, the future VR/MR developers may consider push-
ing the non-urgent notifications until the opportune time, such as
the break during VR/MR activities [7].

This urgency-based adaptation directly supports the vision of
calm technology in MR [23], where information should inform
without overwhelming. By filtering notifications before they reach
the presentation layer, PersoNo ensures that only contextually ap-
propriate interruptions utilise prime visual real estate. Furthermore,
the system’s classification output can further integrate with ad-
vanced MR adaptation frameworks like SituationAdapt [27], which
employs vision-and-language models for environmental analysis.
While PersoNo determines notification urgency based on user pat-
terns, SituationAdapt could identify optimal spatial placement by
analysing the user’s current visual scene, creating a comprehensive
pipeline from urgency assessment to context-aware positioning.

Our current implementation employs binary urgency classifi-
cation, aligning with established notification research methodolo-
gies [33]. However, the modular architecture of our approach fa-
cilitates future extensions to multi-level urgency schemes through
prompt-based redefinition of urgency categories. Such granular
classification would unlock the full potential of existing VR/MR
notification placement [52], enabling nuanced placement strategies
where notification position, opacity, and persistence vary along an
urgency continuum rather than a simple binary threshold.

7.3 Subjective Labelling and Objective User Behaviour

Our study compared two data collection approaches for training no-
tification classifiers: self-labelled urgency ratings (subjective) and
actual interaction behaviour (objective). Although both datasets
were employed in previous notification systems [7, 40], prior sub-
jective data were collected primarily through ESM. Consequently,
the literature lacks analysis of user-labelled datasets and their com-
parison with actual interaction behaviour datasets. The compara-
ble performance between models trained on self-reported data (M;-
SR) and interaction-based data (M,-Dy) suggests that self-reporting
can effectively substitute for longer-term interaction tracking when
building personalised notification classifiers ([H2]). This finding
contradicts prior work suggesting weak correlations between self-
reporting and actual behaviours [10]. The unexpected consistency
between subjective and objective data may be due to our study’s fo-
cus on the specific interaction behaviour of notification responses.
Users are highly familiar with notification patterns in their everyday
messaging interactions and are likely to possess a strong awareness
of both their notification preferences and behavioural tendencies.
Thus, rather than extended data collection periods spanning
weeks, which has been standard practice in previous notification
research [32, 35], personalised notification systems could be de-
ployed using simple user-provided labels. In addition to PersoNo’s

ability to classify notification urgency accurately with limited per-
sonal data, this approach could significantly improve user accep-
tance of intelligent notification systems by minimising the wait-
ing period before deployment. Beyond the notification, a potential
implication is that all intelligent systems could leverage subjective
feedback as training data for interactions with users who are highly
familiar with them. We acknowledge that human behaviour patterns
vary over time [32, 33]. However, we propose using self-labelled
data to initiate and facilitate user adoption of the personalised sys-
tem. Such implementations can continuously adapt based on users’
interaction data to accommodate changing behaviour patterns.

7.4 Limitations

Our study establishes foundational insights for MR notification
management while revealing opportunities for future research.
First, our self-labelling methodology focused on content and
sender variables, following established mobile notification research
paradigms. While this approach successfully demonstrated the
viability of self-reported data for classifier training, future work
could enhance this methodology by incorporating activity-specific
rating scenarios to capture the full contextual richness we identi-
fied as crucial for MR environments. Second, our controlled lab-
oratory environment and pre-established social relationships (us-
ing participant-provided names as placeholders) ensured systematic
variable manipulation but may not fully capture real-world MR no-
tification dynamics. In-the-wild deployments with a longitudinal
study would provide valuable insights into PersoNo’s performance
under authentic conditions and evolving social relationships. Fi-
nally, while our study identified three key contextual dimensions
(content, sender, activity) with 18 participants, notification recep-
tivity in MR likely depends on additional factors. Future work
could explore broader contextual variables, including temporal fac-
tors (time of day) [54], spatial contexts (location [33], proximity to
others), and MR-specific factors (immersion level, virtual-physical
task integration), while validating findings with larger sample sizes.

8 CONCLUSION

Our research addresses notification management in MR by intro-
ducing PersoNo, a personalised LLM-based notification urgency
classifier. Through user studies, we collected the first MR notifi-
cation dataset and discovered that activity context is equally impor-
tant as content and sender in MR, which is a key difference from
mobile notification management. PersoNo achieved 81.5% accu-
racy, 0.786 AUROC, and 0.381 FNR by effectively analysing user
profiles from limited data, outperforming baseline approaches. No-
tably, with PersoNo, self-reported urgency ratings proved effective
for classifier training while considering the contexts, contradicting
assumptions about self-report validity. To conclude, adhering to
HCALI design principles, PersoNo employs Al to minimise distrac-
tions while ensuring notification awareness, simultaneously provid-
ing users with understanding and control.
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